Especialidad médica —

Aplicación, publicaciones y descargas.

Pasos de aplicación de mediNiK®

1. Utilice el endoscopio para navegar hasta que los fragmentos de cálculos renales estén a la vista. Irrigue con solución salina fisiológica estéril (NaCI al 0,9 %) para garantizar una buena visibilidad.
2. ¡Detenga la irrigación! Aplique la sustancia base azul K1 lentamente y de forma pulsada a través del canal de trabajo del endoscopio hasta que los fragmentos que se van a eliminar estén completamente rodeados por el K1 azul. Si hay más de un cáliz renal afectado, repita este paso para cada cáliz individualmente.
Consejo: Utilice sólo la cantidad necesaria de la sustancia base azul K1. A continuación, esta se convertirá en hidrogel mediante la administración del activador amarillo K2, el segundo componente.
3. Enjuague cuidadosamente el canal de trabajo del endoscopio con NaCI al 0,9 %.
¡Atención! Evite la turbulencia o dilución del K1 azul debido a una irrigación demasiado intensa del canal de trabajo. Tire ligeramente del endoscopio hacia atrás.
4. Aplique el K2 amarillo con cuidado y lentamente a través del canal de trabajo previamente irrigado. Desplace el endoscopio lentamente en dirección al cáliz o cálices renales afectados.
¡Atención! Evite la turbulencia del K1 azul debido a una administración demasiado rápida. Independientemente de la cantidad de sustancia base azul K1 utilizada, debe aplicarse todo el contenido de la jeringa del activador amarillo K2 (11 ml).
5. Espere unos 3 minutos hasta que el hidrogel haya alcanzado la firmeza deseada. Acortando el tiempo de espera -y diluyendo el activador amarillo K2 mediante aclarado- se consigue un hidrogel más blando.
6. Agarre y retire con cuidado el coágulo de hidrogel con el instrumento de agarre. La irrigación puede reanudarse ahora con baja intensidad.
¡Atención! La pinza puede cortar el hidrogel si se cierra con demasiada fuerza.

Asegúrese de que se han eliminado todos los coágulos de hidrogel. Sin embargo, si quedaran coágulos de hidrogel, éstos se disuelven -por regla general- con la diuresis. El hidrogel también puede disolverse activamente añadiendo un quelante (p. ej., EDTA).

Repetición del procedimiento: Si se repite el procedimiento, debe eliminarse completamente del riñón todo el K2 amarillo utilizado anteriormente.
Un solo uso: mediNiK®– está destinado a un solo uso y no se debe reesterilizar.
Eliminación de residuos: Las jeringas llenas de K1 azul y K2 amarillo pueden desecharse de acuerdo con las normas internas de desecho hospitalario menos estrictas. El hidrogel debe desecharse por separado, puesto que ha entrado en contacto con las mucosas y/o la orina.

Nota

Todos los incidentes graves relacionados con el producto deberán comunicarse al fabricante y a la autoridad competente del Estado miembro donde se encuentre el usuario y/o paciente (vigilanz@purenum.com).

Preguntas frecuentes sobre el uso de mediNiK®

1 aplicación = 2 puntas (1 x componente K1 + componente K2).

K1 es de color azul y al mismo tiempo transparente, de modo que se crea un buen contraste de color en el monitor y al mismo tiempo los fragmentos de piedra son visibles. Cuando todos los fragmentos de piedra estén completamente mojados con el componente azul, se habrá aplicado una cantidad suficiente.

No es necesario respetar una proporción de mezcla exacta. Debe aplic¿Cómo puede saber si se ha aplicado una cantidad suficiente de activador K2?arse al menos dos o tres veces la cantidad de K2 en comparación con la sustancia base K1 introducida anteriormente. Dado que no es posible sobredosificar el activador K2, también se puede aplicar lentamente todo el contenido de la jeringa (¡sin causar turbulencias!).

En cuanto a la cantidad de sustancia base K1, tiene sentido aplicar sólo la suficiente para encerrar completamente todos los fragmentos según el principio de «tanto como sea necesario, tan poco como sea posible». Aproximadamente de 0,3 ml a 0,5 ml de K1 deberían ser suficientes para un cáliz, por lo que se pueden llenar varios cálices sucesivamente antes de añadir K2. Por otra parte, no es posible aplicar «demasiado» activador K2.

a. No se detuvo la irrigación antes de la aplicación de K1, lo que dio como resultado que K1 se eliminara o se diluyera.
b. El componente K2 se aplicó tan rápidamente que el componente K1 fue «arrastrado debido a la turbulencia resultante».
c. El componente K2 se aplicó demasiado cerca del componente K1,lo que provocó que el componente K1 se eliminara.
d. Se utilizó una cantidad insuficiente del componente K2, por lo que no se observó una coloración amarilla en todo el líquido en el riñón.
e. Si no es la primera aplicación: En caso de irrigación insuficiente, los residuos del componente K2 seguían presentes en el riñón.
f. No se esperó suficiente tiempo para que se forme el gel.

La sustancia base K1 se dispersa y se elimina o se diluye debido al flujo causado por la irrigación.

Si sólo se aplica uno de los dos componentes, no tiene lugar la formación de gel. En consecuencia, los fragmentos residuales no pueden recuperarse como se esperaba.

Si se aplica primero el activador K2, la formación del gel ocurre instantáneamente al aplicar posteriormente la sustancia base K1. Por lo tanto, los fragmentos residuales sólo pueden adherirse al hidrogel de forma insuficiente o no adherirse en absoluto .

El componente K1 (sustancia base), de mayor viscosidad, requiere algo más de fuerza que el componente K2 (activador), especialmente si la aplicación se realiza a través de un catéter (lo que puede ser útil al usar un endoscopio reutilizable, por ejemplo). Con la aplicación recomendada por nosotros directamente a través del canal de trabajo, ambos componentes se pueden dosificar fácilmente. Si no es factible aplicar los componentes K1 o K2 (a través de un catéter), es posible que:

1) el catéter seleccionado sea demasiado fino;
2) haya una obstrucción en el catéter causada por residuos del otro componente que no se eliminaron por lavado.
3) el adaptador Tuohy Borst a la entrada del canal de trabajo esté demasiado apretado, de modo que se reduce la sección transversal del catéter.

Sí, primero debe liberarse el punto de presión técnica. Esto se logra presionando brevemente el vástago del émbolo, con lo que la tapa de cierre queda fijada en su lugar, por ejemplo, colocando la jeringa sobre una superficie firme, de manera similar a otras jeringas de FARCO-PHARMA (por ejemplo, Instillagel y Endosgel).

Sí, mediNiK® puede utilizarse incluso varias veces en un mismo paciente. Para ello, el canal de trabajo del endoscopio y el riñón deben enjuagarse cuidadosamente con una solución salina fisiológica para que no queden residuos del componente K2. Los residuos de K2 provocarían la formación inmediata de gel cuando se volviera a aplicar K1, sin que se puedan humedecer suficientemente los fragmentos del cálculo.

Recuperación de los fragmentos del cálculo renal

El hidrogel se ajusta a una consistencia blanda para que pueda adaptarse a las vías urinarias o a la vaina ureteral. Hay una estrechamiento.justo en la transición de la pelvis renal al orificio ureteral. Si se tira del hidrogel con demasiada rapidez a través de este punto, la parte que sobresale de la cesta de recogida puede cortarse. Esta parte debe recuperarse en un paso posterior. Gracias a la localización directa en la pelvis renal, el agarre y la posterior recuperación son fáciles de realizar.

Los residuos de mediNiK® que permanecen en el riñón no suponen un riesgo para el paciente. La diuresis natural invierte la formación del gel. Ante todo, el gel se vuelve cada vez más blando hasta que vuelve a convertirse completamente en líquido y el paciente lo elimina con la orina.

Tras la aplicación

No. Se aplica el principio de que las jeringas abiertas y usadas sólo pueden utilizarse en el mismo paciente y en el mismo quirófano.

En principio, hay 2 posibilidades:
1) Los cálculos pueden extraerse mecánicamente del hidrogel y enjuagarse con agua suficiente.
2) El hidrogel se disuelve introduciéndolo en un agente quelante (por ejemplo, EDTA), de modo que se disponga de fragmentos aislados del cálculo para su análisis.

Vídeo de formación sobre el uso de mediNiK®

Semi Live ICE25 Rom 2025

Semi Live EAU Madrid 2025

Publicaciones

SOBRE mediNiK®

Stone extraction during flexible ureterorenoscopy with or without the hydrogel method: a randomized, multicenter safety and feasibility study

Amiel T, Neisius A, Netsch C, Secker A, Fisang C, Grunwald I, Lunger L, Straub M. Stone extraction during flexible ureterorenoscopy with or without the hydrogel method: a randomized, multicenter safety and feasibility study. World J Urol. 2025 Oct 31;43(1):655. doi: 10.1007/s00345-025-06011-7 PMID: 41171315

Brief summary of results:

Purpose
Achieving the highest possible stone-free rate is the primary goal of kidney stone surgery, yet standard flexible ureterorenoscopy often leaves small residual fragments that predispose to recurrence. The hydrogel method using mediNiK® was developed to embed and extract even the smallest fragments with conventional baskets. This study aimed to evaluate the safety and feasibility-defined as the ability to extract fragments < 1 mm-of stone extraction during flexible ureterorenoscopy with or without the hydrogel method.

Materials and methods
This prospective, randomized, multicenter proof-of-concept trial included patients > 18 years with kidney stones > 8 mm and no anatomical abnormalities. Patients were randomized to flexible ureterorenoscopy + hydrogel (Group 1) or flexible ureterorenoscopy (Group 2) alone. After laser lithotripsy, fragments were retrieved either embedded in hydrogel or individually, and categorized by size (< 0.5 mm, 0.5-1.0 mm, > 1.0 mm). Explorative statistical analyses included Mann-Whitney U, Student’s t-test, and Chi-square test. Adverse events were monitored intraoperatively and during a 6-week follow-up.

Results 
Of 65 screened patients, 40 were analysed (Group 1: n = 23; Group 2: n = 17). The hydrogel method significantly retrieved more fragments < 1 mm (1716 vs. 209) and > 1 mm (310 vs. 118). On a per-patient level, more < 1 mm fragments were removed in Group 1 (median 7 [IQR 21] vs. 0 [2], p < 0.003). Surgery duration was longer in Group 1 (80 [28] vs. 62 [20] minutes, p = 0.02). No serious adverse events were reported.

Conclusions
The hydrogel method was a safe and feasible addition to fURS, allowing improved retrieval of even the smallest fragments without added risk. The main limitations are the small sample size and absence of long-term stone-free and recurrence data, underscoring the need for larger confirmatory studies.

Novel Biocompatible Adhesive to Remove Stone Dust:
Usability Trial in a Kidney Model

Hausmann T, Becker B, Gross AJ, Netsch C, Rosenbaum CM. Novel Biocompatible Adhesive to Remove Stone Dust: Usability Trial in a Kidney Model. J Endourol. 2021 Aug;35(8):1223-1228. doi: 10.1089/end.2020.0748. Epub 2021 Apr 15. PMID: 33559523.

Brief summary of results:

Introduction and Objective
“Clinically insignificant residual fragments” are an independent predictive factor for recurrence of nephrolithiasis. To improve the stone-free rates (SFR), we tested the viability of a novel bioadhesive system for intrarenal embedding and retrieval of residual fragments <1 mm in a kidney model.

Materials and Methods
All procedures were performed in a standardized setting, including a kidney model (Kidney module right, Samed GmbH, Dresden) in a plastic basin filled with water. We used a Viper URF flexible ureterorenoscope (fURS) (6.6/8F, Richard Wolf, Knittlingen). A mean amount of 138 mg (standard deviation [SD] ±32.2 mg) of sand grains (range, 0.2–0.8 mm) was inserted in renal calices of the kidney model. We assessed the extraction efficacy of fURS using the bioadhesive system. In total, eight different surgeons performed each one trial, respectively. The endoscopic and macroscopic SFR, the level of the surgeons’ experience, and the overall time of stone retrieval were evaluated. Additionally, a survey of the participants was conducted, to assess the contentment with this novel system.

Results
The extraction of the sand grains was only possible using the bioadhesive system, otherwise they were too small sized to grab with a retrieval basket. The total SFR was 84% (SD ±11.7%). The operation time (p = 0.052) and the percentage of extracted sand grains (p = 0.194) were not significantly different between experienced and less experienced surgeons. All participants stated that it was a promising technique, which they could imagine using on a daily basis.

Conclusions
The bioadhesive system improves the SFR with fragments from 0.2 to 0.8 mm (0% vs 84%). Also, the performance of this operation is not dependent on the surgeon’s experience level. This method might improve the SFR in difficult anatomic conditions, that is, lower calices or anomalous kidneys.

Viability and biocompatibility of an adhesive system for intrarenal embedding and endoscopic removal of small residual fragments in minimally-invasive stone treatment in an in vivo pig model

Hein S, Schoeb DS, Grunwald I, Richter K, Haberstroh J, Seidl M, Bronsert P, Wetterauer U, Schoenthaler M, Miernik A. Viability and biocompatibility of an adhesive system for intrarenal embedding and endoscopic removal of small residual fragments in minimally-invasive stone treatment in an in vivo pig model. World J Urol. 2018 Apr;36(4):673-680. doi: 10.1007/s00345-018-2188-8. Epub 2018 Jan 24. PMID: 29368229.

Brief summary of results:

Purpose
To evaluate the viability and biocompatibility of a novel, patented bioadhesive system for intrarenal embedding and retrieval of residual fragments after endoscopic lithotripsy. Complete stone clearance via active removal of residual fragments (RF) after intracorporeal laser lithotripsy may be time-consuming and fail in many cases. Therefore, the novel adhesive has been developed and evaluated for the first time in an in vivo pig model in the present work.

Methods
Four female domestic pigs underwent flexible ureteroscopy (RIRS) or percutaneous nephrolithotomy (PNL) under general anesthesia (8 kidneys, 4 × RIRS, 4 × PNL) evaluating the bioadhesive system. Interventions: RIRS without adhesive system (sham procedure, kidney I); 3 × RIRS using the bioadhesive system (kidneys II–IV); and 4 × PNL using the bioadhesive system (V–VIII). We endoscopically inserted standardized human stone probes followed by comminution using Ho:YAG lithotripsy. The bioadhesive (kidney II–VIII) was then applied and the adhesive-stone fragment complex extracted. After nephrectomy, all kidneys were evaluated by two independent, blinded pathologists. Endpoints were the procedure’s safety and adhesive system’s biocompatibility.

Results
We observed no substantial toxic effects. We were able to embed and remove 80–90% of fragments. However, because of the pig’s hampering pyelocaliceal anatomy, a quantified, proportional assessment of the embedded fragments was compromised.

Conclusions
For the first time, we demonstrated the proven feasibility and safety of this novel bioadhesive system for embedding and endoscopically removing small RF in conjunction with a lack of organ toxicity in vivo.

New for Old–Coagulum Lithotomy vs a Novel Bioadhesive for Complete Removal of Stone Fragments in a Comparative Study in an Ex Vivo Porcine Model

Schoeb DS, Schoenthaler M, Schlager D, Petzold R, Richter K, Grunwald I, Wetterauer U, Miernik A, Hein S. New for Old-Coagulum Lithotomy vs a Novel Bioadhesive for Complete Removal of Stone Fragments in a Comparative Study in an Ex Vivo Porcine Model. J Endourol. 2017 Jun;31(6):611-616. doi: 10.1089/end.2017.0125. Epub 2017 May 8. PMID: 28385037.

Brief summary of results:

Objectives
To evaluate a recently reported new bioadhesive system for the retrieval of small residual fragments (RFs) after intracorporeal lithotripsy, we systematically compared this system with coagulum lithotomy in retrograde intrarenal surgery.

Materials and Methods: We extracted 30 human stone fragments (≤1 mm) in an ex vivo porcine kidney model using a flexible ureteroscope for three groups: (1) the novel bioadhesive, (2) autologous blood as a natural adhesive, and (3) (control group) a conventional retrieval basket. Each group consisted of 15 test runs. Outcomes were evaluated regarding the macroscopic stone-free rate (SFR), retrieval time, and number of ureteral passages.

Results
For groups 1 and 2, a significant advantage in stone clearance, mean retrieval time, and number of retrievals was detected compared to the control group (p = 0.001). The time and number of retrievals were significantly lower in group 1 (10:36 minutes, p = 0.001) than in group 2 (26:12 minutes, p = 0.001), with shorter clotting time and better visibility.

Conclusions
These data show the general feasibility of intrarenal RF embedding to improve the SFR. Our data furthermore suggest the superiority of the artificial bioadhesive embedding agent over the application of native blood. Further in vivo studies and other research are necessary to confirm the adhesive’s effect in patients.

Novel Biocompatible Adhesive for Intrarenal Embedding and Endoscopic Removal of Small Residual Fragments after Minimally Invasive Stone Treatment in an Ex Vivo Porcine Kidney Model: Initial Evaluation of a Prototype

Hein S, Schoenthaler M, Wilhelm K, Schlager D, Thiel K, Brandmann M, Richter K, Grunwald I, Wetterauer U, Miernik A. Novel Biocompatible Adhesive for Intrarenal Embedding and Endoscopic Removal of Small Residual Fragments after Minimally Invasive Stone Treatment in an Ex Vivo Porcine Kidney Model: Initial Evaluation of a Prototype. J Urol. 2016 Dec;196(6):1772-1777. doi: 10.1016/j.juro.2016.05.094. Epub 2016 May 30. PMID: 27256206.

Brief summary of results:

Purpose
Residual fragments related to endoscopic intracorporeal lithotripsy are a challenging problem. The impact of residual fragments remains a subject of discussion and growing evidence highlights that they have a central role in recurrent stone formation. Therefore, we developed a novel bioadhesive system for intrarenal embedding and retrieval of residual fragments after endoscopic lithotripsy in an ex vivo porcine kidney model.

Materials and Methods
In a standardized setting 30 human stone fragments 1 mm or less were inserted in the lower pole of an ex vivo porcine kidney model. We assessed the extraction efficacy of flexible ureteroscopy using the bioadhesive system in 15 preparations and a conventional retrieval basket in 15. Outcomes were compared regarding the endoscopic and macroscopic stone-free rate, and overall time of retrieval.

Results
Embedding and retrieving the residual fragment-bioadhesive complex were feasible in all trial runs. We observed no adverse effects such as adhesions between the adhesive and the renal collecting system or the instruments used. The stone-free rate was 100% and 60% in the bioadhesive and conventional retrieval groups, respectively (p = 0.017). Mean retrieval time was significantly shorter at 10 minutes 33 seconds vs 36 minutes 56 seconds in the bioadhesive group vs the conventional group (p = 0.001).

Conclusions
This novel method involving adhesive based complete removal of residual fragments from the collecting system has proved to be feasible. Our evaluation in a porcine kidney model revealed that this technology performed well. Further tests, including inpatient studies, are required to thoroughly evaluate the benefit and potential drawbacks of bioadhesive based extraction of residual fragments after intracorporeal lithotripsy.

sobre medical need

Stone-event-free survival after retrograde intrarenal surgery: is the stone-free-status so relevant for the future outcomes?

Mesquita S, Mendes G, Marques-Monteiro M, Rocha MA, Madanelo M, Fraga A, Cavadas V. Stone-event-free survival after retrograde intrarenal surgery: is the stone-free-status so relevant for the future outcomes? Int Urol Nephrol. 2025 May;57(5):1473-1480. doi: 10.1007/s11255-024-04343-8. Epub 2024 Dec 28. PMID: 39731646

Brief summary of results:

Introduction
The primary aim of stone treatment is to achieve stone-free status. Residual fragments can cause stone growth, recurrence, urinary tract infections, and ureteric obstruction. Our goal was to describe the natural history of stone burden after retrograde intrarenal surgery (RIRS) based on stone-free status (SFS), evaluating stone growth and stone-events.

Methods
We retrospectively reviewed data from patients who underwent RIRS at a tertiary care center between October 2014 and September 2019. The stone burden was assessed by measuring the maximum diameter (mm) and volume (mm3). Patients were divided into four groups according to SFS-(A) absolute stone-free, no stones on non-contrast-enhanced computed tomography (NCCT); (B) relative stone-free with ≤ 2 mm fragments, (C) relative stone-free with 2.1-4 mm fragments, and (D) residual fragments > 4 mm. Our main outcomes were stone growth over time (defined as an increase in diameter compared to first postoperative measurement) and incidence of stone-related events (pain or additional intervention to treat symptoms, obstruction, or removing fragments).

Results
A total of 98 patients were included in the study-42 were classified as absolute stone-free (Group A), 20 were categorized as relatively stone-free (Groups B and C), and 36 had a residual stone burden with fragments larger than 4 mm (Group D) on postoperative NCCT. There was a significant difference in the number of stones among the groups (p < 0.001). The pre-operative stone volume differed significantly among the groups (p = 0.003). Group A had the lowest median total stone volume (551.3 mm3). Twenty patients (20.4%) developed stone-events during a mean follow-up period of 62.3 months (± 26.0). Stone-event-free survival differed significantly between the groups (p = 0.028), with Group D demonstrating a higher incidence of stone-related events post-RIRS compared to the other groups. Sixteen patients (16.3%) had renal colic requiring a hospital visit across all groups. Thirteen patients (13.3%) required re-intervention (3 patients belonged to Group A, 1 to Group B, 2 to Group C, and 7 to Group D).

Conclusions
Group D shows a higher rate of stone-related events post-RIRS. Ensuring complete stone-free status after RIRS is crucial for treatment success. Other factors should be considered in the management, including ensuring compliance with general preventive measures and stone-specific pharmacological treatments to prevent recurrence.

Endoscopically Determined Stone Clearance Predicts Disease Recurrence Within 5 Years After Retrograde Intrarenal Surgery

Hein S, Miernik A, Wilhelm K, Schlager D, Schoeb DS, Adams F, Vach W, Schoenthaler M. Endoscopically Determined Stone Clearance Predicts Disease Recurrence Within 5 Years After Retrograde Intrarenal Surgery. J Endourol. 2016 Jun;30(6):644-9. doi: 10.1089/end.2016.0101. Epub 2016 Apr 22. PMID: 27021947.

Brief summary of results:

Objective
To assess stone-related events (SREs) requiring retreatment in a series of 100 consecutive patients treated by retrograde intrarenal surgery (RIRS) for renal stones and to evaluate potential risk factors thereof.

Patients and Methods
The primary outcome was incidence of SRE (medical or surgical treatment). Secondary outcomes included side of SRE, time to SRE, and late complications. Analysis of potential risk factors included high-risk stone formers (HRSFs), obesity, high stone burden, and lower pole stones. In addition, we evaluated endoscopically determined small residual fragments (SRF) of <1 mm (i.e., fragments too small for retrieval) as an independent risk factor.

Results
Eighty-five of the 99 patients were followed up for a mean of 59 months (31–69), among whom 26 (30.1%) had SRE. Thirty-four of the 85 (40%) patients were HRSFs, 22 of whom experienced SRE (both sides) during follow-up (64.7%, p < 0.001). Eight of the 17 patients (47.1%) with SRF experienced ipsilateral side SRE compared with 13 (19.1%) of the 68 without SRF (p = 0.022, hazard ratio 2.823, 95% confidence interval [95% CI] 1.16, 6.85). Risk for ipsilateral SRE was unaffected by the presence of SRF among HRSFs (p = 0.561). Of low-risk patients with SRF, 33.3% experienced ipsilateral SRE, while those without SRF experienced no ipsilateral SRE (p < 0.001).

Conclusion
Endoscopically determined stone clearance predicts disease recurrence within 5 years after RIRS. Even SRF are an important risk factor for future stone-related (ipsilateral) events; therefore, patients with residual fragments of any size should not be labeled “stone free” and endoscopic stone treatment should aim at complete stone clearance.

Natural History of Post-Treatment Kidney Stone Fragments: A Systematic Review and Meta-Analysis

Brain E, Geraghty RM, Lovegrove CE, Yang B, Somani BK. Natural History of Post-Treatment Kidney Stone Fragments: A Systematic Review and Meta-Analysis. J Urol. 2021 Sep;206(3):526-538. doi: 10.1097/JU.0000000000001836. Epub 2021 Apr 27. PMID: 33904756.

Brief summary of results:

Purpose
We assessed the literature around post-treatment asymptomatic residual stone fragments and performed a meta-analysis. The main outcomes were intervention rate and disease progression.

Materials and Methods
We searched Ovid®, MEDLINE®, Embase™, the Cochrane Library and ClinicalTrials.gov using search terms: “asymptomatic”, “nephrolithiasis”, “ESWL”, “PCNL”, “URS” and “intervention.” Inclusion criteria were all studies with residual renal fragments following treatment (shock wave lithotripsy, ureteroscopy or percutaneous nephrolithotomy). Analysis was performed using ‘metafor’ in R and bias determined using Newcastle–Ottawa scale.

Results
From 273 articles, 18 papers (2,096 patients) had details of intervention rate for residual fragments. Aggregate intervention rates for ≤4 mm fragments rose from 19% (20 months) to 22% (50 months), while >4 mm fragments rose from 22% to 47%. Aggregate disease progression rates for ≤4 mm rose from 25% to 47% and >4 mm rose from 26% to 88%. However, there was substantial difference in definition of “disease progression.” Meta-analysis comparing >4 mm against ≤4 mm fragments: intervention rate for >4 mm (vs ≤4 mm): OR=1.50 (95% CI 0.70–2.30), p <0.001, I2=67.6%, tau2=0.48, Cochran’s Q=11.4 (p=0.02) and Egger’s regression: z=3.11, p=0.002. Disease progression rate for >4 mm: OR=0.06 (95% CI −0.98–1.10), p=0.91, I2=53.0%, tau2=0.57, Cochran’s Q=7.11 (p=0.07) and Egger’s regression: z=−0.75, p=0.45. Bias analysis demonstrated a moderate risk.

Conclusions
Larger post-treatment residual fragments are significantly more likely to require further intervention especially in the long term. Smaller fragments, although less likely to require further intervention, still carry that risk. Notably, there is no significant difference in disease progression between fragment sizes. Patients with residual fragments should be appropriately counselled and informed decision-making regarding further management should be done.

Clearance rates of residual stone fragments and dusts after endoscopic lithotripsy procedures using a holmium laser: 2-year follow-up results

Kang M, Son H, Jeong H, Cho MC, Cho SY. Clearance rates of residual stone fragments and dusts after endoscopic lithotripsy procedures using a holmium laser: 2-year follow-up results. World J Urol. 2016 Nov;34(11):1591-1597. doi: 10.1007/s00345-016-1807-5. Epub 2016 Mar 21. PMID: 27000560.

Brief summary of results:

Purpose
To investigate the spontaneous clearance rates of remnant particles following miniaturized percutaneous nephrolithotomy (mini-PCNL) and retrograde intrarenal surgery (RIRS).

Methods
Among 624 patients who underwent mini-PCNL or RIRS at our institution from 2011 to 2015, we collected data of 247 patients with 2 years of follow-up. Of these, we included 148 patients with unilateral renal stones between 10 and 30 mm, as well as remnant particles after surgery. The size criteria of dusts and residual fragments (RFs) were, respectively, <1 and <3 mm.

Results
After excluding 22 patients, 126 patients (RFs = 21, dusts = 98, and both RFs and dusts = 7) were analyzed. Mean age was 56.5 (±14.4) years, and mean stone size was 19.5 (±12.5) mm. The mean follow-up period was 18.5 (± 12.9) months. In patients whose remnant particles were naturally eliminated following lithotripsy, the mean stone passage time was 9.0 (±9.3) months in the dusts and 13.9 (±11.1) months in the RFs groups (P = 0.135). Remnant particles disappeared in 42 out of 105 patients (40.0 %) in dusts and 7 out of 28 patients (25.0 %) in RFs groups (P = 0.187). The size of dusts and RFs increased, respectively, in 18.1 % (19/105) and 28.6 % (8/28) of patients with remnant particles during the follow-up period.

Conclusions
The presence of dusts and RFs was poor prognostic factors in patients underwent renal stone surgery using a holmium laser. Complete residual stone removal by using a basket or dusts eradication by irrigation for an adequate time during surgery can be a good surgical strategy.

Removal of Small, Asymptomatic Kidney Stones and Incidence of Relapse

Sorensen MD, Harper JD, Borofsky MS, Hameed TA, Smoot KJ, Burke BH, Levchak BJ, Williams JC Jr, Bailey MR, Liu Z, Lingeman JE. Removal of Small, Asymptomatic Kidney Stones and Incidence of Relapse. N Engl J Med. 2022 Aug 11;387(6):506-513. doi: 10.1056/NEJMoa2204253. PMID: 35947709; PMCID: PMC9741871.

Brief summary of results:

Background
The benefits of removing small (≤6 mm), asymptomatic kidney stones endoscopically is unknown. Current guidelines leave such decisions to the urologist and the patient. A prospective study involving older, nonendoscopic technology and some retrospective studies favor observation. However, published data indicate that about half of small renal stones left in place at the time that larger stones were removed caused other symptomatic events within 5 years after surgery.

Methods
We conducted a multicenter, randomized, controlled trial in which, during the endoscopic removal of ureteral or contralateral kidney stones, remaining small, asymptomatic stones were removed in 38 patients (treatment group) and were not removed in 35 patients (control group). The primary outcome was relapse as measured by future emergency department visits, surgeries, or growth of secondary stones.

Results
After a mean follow-up of 4.2 years, the treatment group had a longer time to relapse than the control group (P<0.001 by log-rank test). The restricted mean (±SE) time to relapse was 75% longer in the treatment group than in the control group (1631.6±72.8 days vs. 934.2±121.8 days). The risk of relapse was 82% lower in the treatment group than the control group (hazard ratio, 0.18; 95% confidence interval, 0.07 to 0.44), with 16% of patients in the treatment group having a relapse as compared with 63% of those in the control group. Treatment added a median of 25.6 minutes (interquartile range, 18.5 to 35.2) to the surgery time. Five patients in the treatment group and four in the control group had emergency department visits within 2 weeks after surgery. Eight patients in the treatment group and 10 in the control group reported passing kidney stones.

Conclusions
The removal of small, asymptomatic kidney stones during surgery to remove ureteral or contralateral kidney stones resulted in a lower incidence of relapse than nonremoval and in a similar number of emergency department visits related to the surgery. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and the Veterans Affairs Puget Sound Health Care System; ClinicalTrials.gov number, NCT02210650.)

The Predictive Factors for Readmission and Rehospitalization After Retrograde Intrarenal Surgery: The Results of RIRSearch Study Group

Dogan C, Yazici CM, Akgul HM, Ozman O, Basatac C, Cinar O, Siddikoglu D, Cakir H, Elmaagac B, Sancak EB, Onal B, Akpinar H. The Predictive Factors for Readmission and Rehospitalization After Retrograde Intrarenal Surgery: The Results of RIRSearch Study Group. J Endourol. 2022 Jan;36(1):56-64. doi: 10.1089/end.2021.0327. Epub 2021 Dec 9. PMID: 34235975.

Brief summary of results:

Purpose
Retrograde intrarenal surgery (RIRS) is a safe and effective treatment option for upper urinary tract stones smaller than 2 cm. Although several studies have documented perioperative and postoperative complications related to RIRS, there exists limited data regarding the readmission and rehospitalization of patients after RIRS. The aims of the study were to document the rates of readmission and rehospitalization after RIRS and to determine the predictive factors for readmission and rehospitalization.

Materials and Methods
In this study, we retrospectively analyzed patients who underwent RIRS for the treatment of renal stone disease and were unexpectedly readmitted to the hospital within 30 days after discharge. The hospital admission systems were used to determine readmissions and rehospitalizations. Readmission and rehospitalization rates, causes, and treatment procedures were evaluated. Univariate and multivariate analyses of clinicodemographic properties were performed to evaluate possible predictive factors for readmission and rehospitalization after RIRS.

Results
A total of 1036 patients were included in the study. Of these patients, 103 (9.9%) were readmitted to the hospital. Among these readmissions, 35 patients (33.9%) were rehospitalized and 14 (13.6%) underwent surgical intervention. The most common reasons for readmission were renal colic and fever. The presence of preoperative pyuria (odds ratio [OR] 1.86), stone volume (OR 1.54), postoperative complications (OR 3.66), and stone-free status (OR 0.46) were predictive factors for readmission, whereas hospitalization time (OR 1.32), postoperative complications (OR 9.70), and stone-free status (OR 0.06) were predictive factors for rehospitalization after RIRS.

Conclusion
Nearly 10% of patients who underwent RIRS were readmitted to the hospital within the first month after discharge, and some were rehospitalized. Preoperative pyuria, high stone volume, presence of postoperative complications, and low stone-free status predicted this readmission and rehospitalization. Clinicians must recognize these predictive factors and inform their patients about this possibility.

Downloads

Aquí encontrará información detallada sobre los productos, instrucciones útiles e instrucciones de uso de nuestros productos para su descarga.

Instrucciones de uso

Carpeta del producto

Folleto del estudio 2025

Información resumida para médicos

Consejos y trucos

Preguntas frecuentes

Vídeo de formación

Vídeo Semi Live EAU Madrid 2025

Certificado MDD

Certificado MDR

Certificado PURENUM ISO 13485

Instrucciones Breves

Vídeo Semi Live ICE25 Rom